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Abstract—A model has been developed to describe the two-dimensional cellular motion of a viscous
fluid with Prandtl number of order unity heated from below at high Rayleigh number. This model is
easily adapted to describe such flow for infinite Prandtl nufber provided all boundaries are free. It has
been suggested that a good approximation to the physical problem of flow between rigid horizontal
boundaries will be obtained by setting the Prandtl number equal to infinity, thus ignoring the momentum
convection. Similar cellular motion occurs in flow in a porous medium at high Rayleigh numbers and a
similar model has been proposed to describe this motion. The basic features of the model are outlined and
it is shown that the model fails to describe either the motion of an infinite Prandtl number fluid between
parallel rigid boundaries or fluid in a porous medium. An analysis of the model for large finite Prandtl
number and large Rayleigh number shows that as the Prandtl number is increased the velocity boundary
layers on the rigid horizontal boundaries thicken, and eventually fill the cell, thus losing their boundary
layer identity and causing the breakdown of the model.

NOMENCLATURE 3,6y, order of magnitude width of horizontal
A, Rayleigh number for flow in a porous velocity boundary layers;
medium; 8y,  order of magnitude width of horizontal
BL, subscript denoting boundary layer thermal boundary layers, introduced
function; only when g # 6r;
d, vertical separation of the plates; 3,,  order of magnitude width of vertical
int, subscript denoting interior function; boundary layers;
K, permeability; 0, scaled temperature difference;
L, cell width; ", vorticity ;
Nu, Nusselt number; K, thermometric conductivity;
Pr,  Prandtl number; K.  diffusivity of a fluid in a porous
Ra, Rayleigh number; medium;
T,, average temperature; v, kinematic viscosity;
AT, temperature difference between the ¥, stream function;
plates; [], square brackets denote order of mag-
u, velocity vector; nitude of a quantity.
X, horizontal coordinate measured from
one cell boundary; INTRODUCTION
z, vertical coordinate measured from the WHEN a fluid is heated from below it becomes
lower plate. unstable at a critical Rayleigh number and when
the Rayleigh number is just above this critical
Greek symbols value the flow takes the form of steady convec-
o, coefficient of thermal expansion; tion cells. An asymptotic expansion has been
7, coefficient of volumetric expansion developed to describe this flow for values of the
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Rayleigh number just above critical (for a
review of this work see Segel [1]). When the
Rayleigh number is increased further the flow
consists of two dimensional laminar convection
cells, as has been shown by the careful experi-
ments of Koshmeider [2]. For very large
Rayleigh numbers the experiments of Rossby
[3] show that the flow becomes time-dependent
and eventually turbulent. It seems reasonable
therefore to study a model of two-dimensional
laminar convection cells for high Rayleigh
numbers both to understand this flow and
hopefully to explain the onset of time-depen-
dence and turbulence.

The experiments of Elder [4] show that the
flow in a porous medium at high Rayleigh
number also takes the form of laminar convec-
tion cells.

A boundary layer model has been developed
by Robinson [5] to describe the motion of a
fluid with Prandtl number of order unity
heated from below at high Rayleigh number.
Rectangular cells with both rigid and free
boundary conditions were considered. This
model may be easily modified to describe
such motion for a fluid with an infinite Prandil
number provided that all boundaries are free
(see Robinson [6, 7]. Turcotte and Oxburg
[8]) and this extension of the model and the
results of a simple computation are outlined
in an appendix to this paper.

The model has been used by Weinbaum [9]
to describe motion in a rigid horizontal cylinder
for Prandtl number of order unity and by
Menold and Ostrach [10] to describe motion
in a rigid horizontal cylinder for infinite Prandtl
number. The latter application of the model
is questionable as no velocity boundary layer
exists near the top and bottom of the cylinder
and there is insufficient velocity to convect
the heat along the boundary layer at those places.
It is suggested that a two-cell model may be
appropriate for this problem.

It has been suggested by several authors that
a good approximation to the physical problem
of flow between rigid horizontal boundaries is
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obtained by setting the Prandtl number equal to
infinity, thus ignoring the momentum convec-
tion. It is therefore of interest to determine
whether the above model may be used to des-
cribe either the motion of an infinite Prandtl
number fluid between parallel horizontal rigid
boundaries as has been suggested by Turcotte
[11] or the flow in a porous medium as has
been suggested by Elder [4]. We discuss here
the essential features of this model and show
that it fails to describe the flow in either case.

We refer to “infinite Prandtl number’” when
1 < R < Rr* (see Robinson [5]. p. 598). If the
3 power of the Prandtl number is small com-
pared with the Rayleigh number (even if it is‘
large compared to unity) then the model
developed by Robinson [5] is appropriate and
the variation of the heat flux with change in
Prandtl number predicted by the theory agrees
well with the available experimental results
(loc. cit., Fig. 8).

The available numerical results on two-
dimensional convection cells at high Rayleigh
number [12-14] all consider Prandtl numbers
of order unity.

OUTLINE OF THE MODEL AND APPLICATION
TO THE MOTION IN AN INFINITE PRANDTL
NUMBER FLUID BETWEEN RIGID
HORIZONTAL BOUNDARIES

The Boussinesq approximation is used in
writing the equations for conservation of mass,
momentum (and eventually vorticity) and ther-
mal energy. The density and the coefficients of
viscosity and thermal diffusivity are assumed to
be constant except for the density in the body
force term in the momentum and vorticity
equations.

With the non-dimensionalization r = dr’,
t =(d?¥x)t, T =T, + AT where d is the
separation of the horizontal plates, « is the
thermometric conductivity, AT is the tempera-
ture difference between the plates and Ty .is the
mean temperature, the equations of motion in
two dimensions are
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¥ is the stream function of flow [u, = — (dy/dz),

u, = (Oy/0x); the continuity equation (0u,/dx)
+ (0u,/0z) = 0 is automatically satisfied]; # is
the vorticity = (fu/dz) — (Qu,/ox) = — V3§,
Ra is the Rayleigh number Ra = (gaATd>/xv);
Pr = v/x is the Prandtl number of the fluid.

For infinite Prandtl number the vorticity
equation (2) becomes

2. p 00
V*y = Ra Em

We will discuss here rectangular convection
cells with dimensionless width L. The fluid is
confined between rigid horizontal boundaries
and is heated from below. The temperature
boundary conditions are # = 7} on z = §. The
vertical boundaries are periodic—we consider
one of an infinite set of cells—and the tempera-
ture boundary conditions on the vertical bound-
aries are 00/0x = O0{on x = 0, L). These are also
the boundary conditions appropriate for in-
sulated vertical boundaries.

The velocity component perpendicular to
the boundaries is zero, and thus we set iy = 0 on
all boundaries (z=0, 1 and x =10, L). The
horizontal boundaries are rigid and the velocity
parallel to these boundaries vanishes, ieg,
u, = — (Of/0z) =0 on z=0, 1. Since the
vertical boundaries between the cells are periodic
there must be zero stress along these boundaries,
ie (Quyox) = — (0*Y/ox*) =0 on x=0, L.
The stream function is constant along the
boundaries giving (0%)/0z2)=0 on x=10, L
and this boundary condition can be written
-V =5 = 0.

The temperature and the stream function
are written as an interior function plus boundary
layer functions

3

!JI = ‘f’iut + Z l’bBL
0= Gint + Z QBL'
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All boundary layer functions depend on the
boundary layer coordinate and tend to zero
in the interior of the cell It is the sums of these
interior and boundary layer functions which
must satisfy the boundary conditions.

It is assumed that the streamlines for the
inner flow are closed. Since the interior velocity
is always found to be greater than unity by an
order of magnitude the heat conduction is
unimportant in the interior and the temperature
is convected unchanged around the (closed)
streamlines, Since the problem is asymmetrical
this constant temperature is positive near the
lower boundary and negative near the upper
boundary. The interior temperature must there-
fore be zero: 8, = 0. The equation for the
interior stream function is then

Vi = 0. @

The temperature difference, 8, is assumed to be
non-zero in boundary layers along each wall,
and all heat transport takes place in those
boundary layers.

The following are the balances that must be
satisfied in the boundary layers:

{1} The flow is driven by the buoyancy forces
acting in the vertical boundary layers. The
vorticity creation and conduction terms in the
vorticity equation (3) must be of equal order of
magnitude in those boundary layers:

*n

Virg, = éng ~ [np ] 0,2
and
Ra?E ~ Raéd;t
ax
This balance requires that

Ra 5!} ~ [r,BL} (5)

Square brackets denote the order of magnitude
of a quantity, §, is the width of the vertical
boundary layers and 8y is the width of the
horizontal boundary layers. The subscript BL
denotes a boundary layer function and the
subscript int an interior function.
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(2) The heat is conducted through the hori-
zontal boundaries and convected away in the
horizontal boundary layers. The velocity in
these regions is the interior velocity; that is we
take the interior velocity to satisfy both bound-
ary conditions on the horizontal boundaries.
The velocity parallel to the boundaries is thus

u X Qg;’-'—'z ~ [t ] O
The heat conduction is u,0y ~ [U;] 67 The
heat convection through the boundaries is

L
{(06/0z)dx ~ 55 *. The two terms may balance
4]
provided
[“int] = 5;} 6)

This is equivalent to the requirement that the
heat convection and conduction terms should
be of equal order of magnitude in the horizontal
boundary layers.

(3) The heat which is conducted into the cell
through the horizontal boundaries is convected
along the vertical boundary layers

o' = [tin] 0. N

(4) The boundary layer function in the verti-

cal boundary layers are chosen such that the

necessary boundary conditions may be satisfied.

Thus %g. + i =0 on x =0, L. Since the

interior functions vary over distances of order
unity,

[thine] = [Mine = (5] (8)

The vorticity equation in those regions may be
integrated to give #, = Ra [ 6dx where 7y,
is the value of the boundary layer vorticity on
the boundary and the temperature integration
is taken across the boundary layer. The bound-
ary condition on the interior stream function
is then V?y,, = Ra { 8dx on that boundary.

Equations (5}-(8) give us four relations from
which we may determine the four unknowns.
They are

[uint] = Rai
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d,=Ra"t
63 - Ra-*
[np] = Ra?,

and the Nusselt number of the flow has magni-
tude [Nu] = Rat.

The model is self-consistent provided (vV) »
V28 in the vertical boundary layers. Otherwise
the heat will diffuse faster than it is transported
and the boundary layer will lose its identity,
i.e. the temperature equation in those regions
would be (3%0/0x?) = 0, which does not have a
boundary layer type solution (with & # 0,
(06/0x) =0and 6 — O as x —» o0).

In the model above we find (v. V) 6 ~ [u;,,] =
Ra* and V?0 ~ §;? = Ra*. This necessary
condition that the model be self-consistent is
not satisfied and the model cannot describe
a possible motion of the system.

The model may be altered by postulating
velocity boundary layers near the vertical
boundaries (rather than the vorticity boundary
layers demanded by the boundary conditions),
or velocity boundary layers near the horizontal
boundaries, or both, but in each case an incon-
sistency arises.

If the Prandtl number is of order unity the
vorticity convection may not be neglected. The
vorticity equation is then equation (2) above
and the required balances are satisfied by
[tim] = Ra3, 8, = 85 = Ra*, [Nu] = Ra?* with
constant interior vorticity and velocity bound-
ary layers along the horizontal boundaries in
which there is a balance between the momentum
convection and the conduction terms. It is
these boundary layers which allow the velocity
to be of sufficient order of magnitude to convect
the necessary heat away from the horizontal
boundaries; when the convection term is neg-
lected as it is in the infinite Prandtl number
approximation no such velocity layers may
exist. If, however, the boundaries are all free
the internal velocity may have a non-zero
component parallel to these boundaries and the
heat transfer may be achieved without the aid
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of velocity boundary layers. When the boundary
is a rigid horizontal cylinder there are regions
at the top and bottom where the boundaries
are horizontal and there is again insufficient
thermal convection in the boundary layer.
The model, which has been applied by Menold
and Ostrach [10] in an attempt to describe this
flow, again fails. It is suggested that a two-cell
model may be appropriate in this case.

Turcotte [9] has suggested a similar model
to describe this flow. His analysis suggests
[4m] = R* and 8, = 6y = R*. Using these
values, the heat conducted through the hori-
zontal boundaries is of order dz! = R*, and
the heat convected along the vertical boundary
layers is of order [u;,]d, = R* Thus the
necessary balance between the heat conducted
through the horizontal boundaries and the
heat convected along the vertical boundary
layers is not satisfied in that model.

APPLICATION TO FLOW IN A POROUS MEDIUM
The experiments of Elder [4] show that a
similar cellular motion may be expected for
flow in a porous medium; it is therefore of
interest to determine whether this model will
describe that flow at large Rayleigh number.
The vorticity equation for flow in a porous
medium has been shown by Wooding [15] to be

n=A.6, ©)

where A = gKyATd/k,v is the Rayleigh num-
ber of this problem. K is the permeability, «,,
the diffusivity and 7 the volumetric coefficient
of expansion. The normal velocity vanishes
on all boundaries so we set y = 0on x =0, L
and z =0, 1. The temperature equation and
boundary conditions are unchanged.

We again assume that the interior streamlines
are closed and find that the interior functions
satisfy the equations

Oine = 0 Nime = 0.

The necessary balances are similar to those
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given above for an infinite Prandtl number
viscous fluid. They are:

(1) The flow is driven by the buoyancy forces
in the vertical boundary layers. The vorticity
in those boundary layers must balance the
temperature gradient

(18] = ot (10)

(2) The heat is conducted through the hori-
zontal boundaries and convected away in the
horizontal boundary layers.

[ine] O = O . (11)

(3) The heat which is conducted into the
horizontal boundary layers is convected along
the vertical boundary layers. The fourth condi-
tion below implies that the vertical boundary
layer velocity will be greater in order of magni-
tude than the interior velocity.

[up] b, = dx " (12)

(4) The boundary layer function in the vertical
boundary layers are chosen such that the
necessary boundary conditions may be satisfied.
Thus ¥;,, + Y. = 0on x =0, L and

[Vee] = [up] 6, = (5] & = (U] (13)

If the vorticity boundary layer equation is
integrated across the boundary layer, the bound-
ary condition on the interior stream function is
found to be Y, = — g, = — A [ 0dx.

Equations (11-13) may be solved to give
0y = 1 which is contrary to the boundary layer
assumption of the model. The model cannot
therefore describe this flow.

Elder [4] presented experimental and com-
puted results for flow in a porous medium which
suggests that for large Rayleigh number the
Nusselt number is proportional to the Rayleigh
number. He gives a short analysis of a horizontal
boundary layer which suggests oy = A7!;
[0y p/0x] = A. However in this model

[52%1/522] = [Yp ] 0g* = 4°

in this region, and the vorticity equation is
0%y/0z* = 0, which does not have a boundary
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layer type solution. This short analysis cannot
therefore form the basis of a complete model
of the flow.

APPLICATION TO MOTION OF A VISCOUS
FLUID WITH LARGE RAYLEIGH NUMBER

It is instructive to examine the variation of
the boundary layer thickness in a large Prandtl
number fluid in order to see how the breakdown
of the model occurs as the Prandtl number
increases to infinity. For finite Prandtl number
the vorticity equation is equation (2) above.
The derivation of the interior solutions is as
outlined by Robinson [7] ; the interior equations
are V? Vim = Oo, Oine = 0.

The velocity and temperature boundary layers
on the horizontal boundaries will now have
different thicknesses, dy, dr with d4 > 1. The
balances of the model are as follows:

(1) The flow is driven by the buoyancy forces
in the vertical boundary layers. For large
Prandtl number there is a balance between
vorticity creation and conduction in these
regions

[ns}8.% = Rad; ' (14)

(2) The heat is conducted through the hori-
zontal boundary layers. Since these layers are
narrower than the velocity boundary layers,
the appropriate velocity parallel to the bound-
aries will be of order of magnitude [u;,, ] (67/dy).
The heat flux balance is thus

[t4ine) (51/0) 67 = 07 . (15)

(3) In the velocity boundary layers along the
rigid horizontal boundaries there will be a
balance between the momentum conduction and
convection terms

(1/Pr) [thine] = 35°. (16)

(4) All the heat flux is convected along the
vertical boundary layers.

[uint] 5:1 = 5;1 (17)

(5) The boundary layer vorticity in the vertical
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boundary layers is chosen to satisfy the bound-
ary condition #;,, + #p. = 0.

(5] = [ime): (18)
These balances are satisfied by [u;,, ] = Ra* Pr™?
6r = Ra™*Pr¥, &y = Ra *Pri,
, = Ra~Pr~s

As the Prandtl number is increased for a fixed
Rayleigh number the velocity boundary layers
on the rigid horizontal boundaries thicken
and when Ra~*Pr? ~ 1 these boundary layers
fill the cell: the boundary layer analysis is then
invalid.

Pillow [16] has developed a similar model in
which the requirement that the boundary
layer vorticity be chosen so as to satisfy the
boundary conditions is replaced by a balance
between the buoyancy torque and the sheer
stress torque. Using this model we find 6y =
Pr* Ra™*% so that a similar breakdown occurs
for PrtRa™* ~ 1.
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APPENDIX
Flow in an infinite Prandtl number viscous fluid
with all boundaries free

A solution to this problem has been outlined
by Turcotte and Oxburgh [8]. Here a more
complete formulation of certain features of the
model as developed in Robinson [6], [7] and
the result of a simple computation are given.

The temperature and vorticity equations are
equations (1), (3) in the above paper. The tem-
perature boundary conditions are ¥y =5 =0
on all boundaries. Three of the necessary
balances (equations (5), (7), (8)) are unchanged
by the change of boundary conditions but
equation {6) becomes u ~ [u;,,]

[uint] = 51;2 (Al)

since the interior velocity parallel to the
horizontal boundaries does not now vanish
on those boundaries.

The balances may be satisfied to give

[uim] = Ra%
517 == 5H = Ra—é—
N, ~ Ra*.

In the vertical boundary layers it is now
found that V20 ~ (v.V)@ and the model is
therefore valid. This model is in fact almost the
same as that for the finite Prandtl number and
free boundary conditions with the interior
velocity everywhere dominant and the tem-
perature convected smoothly alongside the
boundaries and around the corners (see Robin-
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son [5]). However the momentum convection
term is now absent and we have a balance
between momentum creation and conduction
in the vertical boundary layers.

The interior equations are 8,,, = 0, V¥, = 0
with boundary conditions y;,, = 0 on all bound-
aries; V2, = 0onz = 0,1; V2, = —Ra | 6dx
=f@) on x=0; VY, =f(1 —z) on x = L,
where the integral is across the appropriate
boundary layer. This vorticity boundary condi-
tion is obtained by twice integrating the vertical
vorticity boundary layer equation and setting
NeL + N = 0 on each vertical boundary.

If f(2) is expanded in a sine series,

f(zy= ia,,sin nnz
1

(which does not necessarily imply that f(z) — 0
as z — 0, 1), the interior stream function is

o0
a, . x
Vime =— Ra*X S S0 1RZ {_——sinh —
n=1
x [coshna(L — x) + (—1)" cosh nnx]
sinh nrx
sinh? nnL
The temperature equation in the vertical bound-
ary layers may be integrated to give (y,,,/0x)
f(2) = constant = A, which is a statement of the
conservation of heat flux in those regions.
Inserting the above values of f{(z), ¥,, into this
equation, and equating coefficients of sin Nnz
(N=0,1,2...) gives

[1+ {(—1"cosh nxL}} . (A2

(A3)

© N-1

Z ancnan~N+ Z GnCply ey — Z

n=N+1 n=1 n=1

X acan_.=0 N=123,...

where
I
" 2mnsinh? nnL

+ (=1} — naL[1 + (— 1y’ coshL]}. (A4)
These equations determine the as yet unknown

{sinh neL{cosh nrL

Cp
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constants up toa factor ,/4 where A is the vertical
heat flux in the boundary layer. This constant
plays the same part in the analysis that the
interior vorticity played in the finite Prandtl
number problem, and is determined when the
problem is solved completely.

The problem has been solved on a computer
taking into consideration only the first term
in the expansion of f(z) (a = 0 for n > 1} and
using the approximations as outlined in Robin-
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son [5]. The Nusselt number has a maximum
of Nu =019 Ra* for a cell width L = 1:3.
Turcott and Oxburgh [8], who made the
approximation f{z) = constant, obtaineda value
of Nu = 0-17 Ra* for a cell width L = 1-4. These
estimates may be compared with the value of
Nu = 028 Ra? for a large, but finite, Prandtl
number. It is suggested that the difference may
be due to the crudity of the above approxima-
tions to f(z).

Résumé—Un modéle a été élaboré pour décrire le mouvement cellulaire bidimensionnel d’'un fluide
visqueux avec un nombre de Prandtl de 'ordre de I'unité chauffé par en dessous 4 des nombres de Rayleigh
élevés. Ce modéle est facilement adapté pour décrire un tel écoulement pour un nombre de Prandtl infini
pourvu que toutes les frontiéres soient libres. On a suggéré qu'une bonne approximation du probléme
physique de I'écoulement entre des frontieres horizontales rigides sera obtenue en posant le nombre de
Prandtl égal & I'infini, ignorant ainsi la convection de la quantité de mouvement. Un mouvement cellulaire
semblable se produit dans 'écoulement dans un milieu poreux & des nombres de Rayleigh élevés et un
modéle semblable a été proposé pour décrire ce mouvement. Les caractéristiques de base du modéle
sont esquissées et 'on montre que le modeéle ne réussit pas & décrire soit le mouvement d’un fluide 4 nombre
de Pranddl infini entre des frontiérés paraliéles rigides soit celui d’un fluide dans un milieu poreux. Une
analyse du modéle pour un nombre de Prandt] fini et élevé et un grand nombre de Rayleigh montre que
lorsque le nombre de Prandtl est augmenté, les couches limites dynamiques sur les frontiéres horizontales
rigides s’épaississent, et remplissent éventuellement la cellule, perdant ainsi leur identité de couche limite
et provoquant la défaillance du modéle.

Zusammenfassung—Es wurde ein Modell entwickelt, um die zweidimensionale Zellbewegung einer
viskosen, von unten beheizten Fliissigkeit hoher Rayleighzahl und einer Prandti-Zaht von der Grdssen-
ordnung 1 zu beschreiben. Das Modell ist auch geeignet, Strémungen bei unendlich grosser Prandti-Zahl
und freien Begrenzungen zu beschreiben. Es wurde angenommen, dass eine gute Ubereinstimmung zum
physikalischen Problem der Strémung zwischen festen, horizontalen Begrenzungen erreicht wird, wenn
man die Prandtl-Zahi gleich Unendlich setzt und so die Impuls-Bewegung vernachlissigt.

Eine dhnliche Zellbewegung tritt in einem pordsen Korper bei hohen Rayleigh-Zahlen auf. Ein ent-
sprechendes Modell wurde vorgeschlagen, um diese Bewegung zu beschreiben, Die Grundmerkmale des
Modells werden erwithnt und es wird gezeigt, dass das Modell entweder bei der Beschreibung der Bewegung
einer Fliissigkeit bei unendlich grosser Prandtl-Zahl zwischen parallelen festen Begrenzungen oder bei
der Beschreibung eines Minimums in einem pordsen Korper versagt. Eine Untersuchung des Modells
fiir grosse endliche Prandtl-Zahlen und grosse Rayleigh-Zahlen zeigt, dass bei Erhdhung der Prandti-
Zahl die Geschwindigkeitsgrenzschichten an den festen, horizontalen Begrenzungen anwachsen und die
Zelle womdglich auffiilien. Dadurch verlieren sie ihre Eigenschaft als Grenzschicht, was das Versagen des

Modells bewirkt.

AHHOTAIHA—-PABPAGOTAHA MOJelb JUIA ONMCAHUA HNBYXMEPHOTO HYEHUCTOTO NBIKEHUA
HarpeBaeMoif CHU3Y BA3KOI MuAKocTU ¢ 4ucyom ITpannTas nopanka egUHANEL Npu GoabloM
yucae Pesea. 9Ty Mo[eab JErKo NPUCTIOCOGNTE I ONUCAHNA TAKOTO JBUMEHUA HPH (ecKo-
Heusgom uncne [Ipamaras, ecam Bce rpasunsl cobopmni. Ilpepmonaraercs, uto xopoiree
npubmuKenne K pusudeckolt 3ajaye TeIeHUA B JHECTHUX TOPHSOHTAJIBHHX IPAHULAX MOMKHO
MONy4uTE, NPUHAB uncyo TIpauyras paBueiM GeckouednocT# u npeneGperas Takum ofpasom
KOHBeKIMel. AHAJOTHYHOe AYeNCTOE IBIKeHNHe NPOUCXOAUT B NIOpUCTOl cpefie Ipy §OILIIMX
yucaax Pejest, M03TOMY MOMHO TPEATIONOMMUTH, YTO STOT Cay4ad MoseT OBITH ONMCAH
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npegmaraeMoit mogeinno. aerca ofiee onucanne aToi MOfeJIM M YKA3aHO, YTO OHA He MOMKeT
GBITh MCMOIL30BAHA [JIA ONMMCAHUA TEUYEHNS MUIKOCTH B HECTKUX rpaHMIax npu GecKoHeu-
HoM ducae TIpaHATIA WIH HHAKOCTH B IOpUCTOl cpefe. AHAJIU3 3TOH MOZesu HIA GOJIbUIOTO
KoHeuHoro uucaa Ilpanpria u Goxpworo uucia PeseAa mokassBaer, YTO NpHM YMeHbUIEHUM
uucia TIpanaTas TONMHA TMAPOJMHAMMYECKOTO MOTPAHMYHOTO CJOA HA “JKECTKON TOpM-
BOHTAILHOW T'paHuie YBENNYMBAETCH U MHOI[A HAMNOJHAET AvYeiiKy; TakuM o6pasom,
MOPpAaHKYHEI C10it TepecTaeT CyIeCTROBATE M MOAEh HAPYIIAETCA.
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