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Abstract-A model has been developed to describe the two-dimensional cellular motion of a viscous 
fluid with Prandtl number of order unity heated from below at high Rayleigh number. This model is 
easily adapted to describe such flow for infinite Prandtl nainber provided all boundaries are free. It has 
been suggested that a good approximation to the physical problem of flow between rigid horizontal 
boundaries will be obtained by setting the Prandtl number equal to infinity, thus ignoring the momentum 
convection. Similar cellular motion occurs in flow in a porous medium at high Rayleigh numbers and a 
similar model has been proposed to describe this motion. The basic features of the model are outlin&d and 
it is shown that the model fails to describe either the motion of an infinite Prandtl number fluid between 
parallel rigid boundaries or fluid in a porous medium. An analysis of the model for large finite Prandtl 
number and large Rayleigh number shows that as the Prandtl number is increased the velocity boundary 
layers on the rigid horizontal boundaries thicken, and eventually fill the cell, thus losing their boundary 

layer identity and causing the breakdown of the model. 
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NOMENCLATURE 

Rayleigh number for flow in a porous 
medium ; 
subscript denoting boundary layer 
function ; 
vertical separation of the plates ; 
subscript denoting interior function ; 
permeability ; 
cell width ; 
Nusselt number ; 
Prandtl number ; 
Rayleigh number ; 
average temperature ; 
temperature difference between the 
plates ; 
velocity vector ; 
horizontal coordinate measured from 
one cell boundary ; 
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2 
t-1, 

order of magnitude width of horizontal 
velocity boundary layers; 
order of magnitude width of horizontal 
thermal boundary layers, introduced 
only when 6, + 6, ; 
order of magnitude width of vertical 
boundary layers ; 
scaled temperature difference ; 
vorticity ; 
thermometric conductivity ; 
diffusivity of a fluid in a porous 
medium ; 
kinematic viscosity ; 
stream function ; 
square brackets denote order of mag- 
nitude of a quantity. 

INTRODUCTION 

vertical coordinate measured from the WHEN a fluid is heated from below it becomes 
lower plate. unstable at a critical Rayleigh number and when 

the Rayleigh number is just above this critical 
Greek symbols value the flow takes the form of steady convec- 

cr, coefficient of thermal expansion ; tion cells. An asymptotic expansion has been 

Y, coefficient of volumetric expansion ; developed to describe this flow for values of the 
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Rayleigh number just above critical (for a 
review of this work see Segel [l]). When the 
Rayleigh number is increased further the flow 
consists of two dimensional laminar convection 
cells, as has been shown by the careful experi- 
ments of Koshmeider [2]. For very large 
Rayleigh numbers the experiments of Rossby 
[3] show that the flow becomes time-dependent 
and eventually turbulent. It seems reasonable 
therefore to study a model of two-dimensional 
laminar convection cells for high Rayleigh 
numbers both to understand this flow and 
hopefully to explain the onset of time-depen- 
dence and turbulence. 

The experiments of Elder [4] show that the 
flow in a porous medium at high Rayleigh 
number also takes the form of laminar convec- 
tion cells. 

A boundary layer model has been developed 
by Robinson [5] to describe the motion of a 
fluid with Prandtl number of order unity 
heated from below at high Rayleigh number. 
Rectangular cells with both rigid and free 
boundary conditions were considered. This 
model may be easily modified to describe 
such motion for a fluid with an infinite Prandtl 
number provided that all boundaries are free 
(see Robinson [6, 71. Turcotte and Oxburg 
[S]) and this extension of the model and the 
results of a simple computation .are outlined 
in an appendix to this paper. 

The model has been used by Weinbaum [9] 
to describe motion in a rigid horizontal cylinder 
for Prandtl number of order unity and by 
Menold and Ostrach [lo] to describe motion 
in a rigid horizontal cylinder for infinite Prandtl 
number. The latter application of the model 
is questionable as no velocity boundary layer 
exists near the top and bottom of the cylinder 
and there is insufficient velocity to convect 
the heat along the boundary layer at those places. 
It is suggested that a two-cell model may be 
appropriate for this problem. 

It has been suggested by several authors that 
a good approximation to the physical problem 
of flow between rigid horizontal boundaries is 

obtained by setting the Prandtl number equal to 
infinity, thus ignoring the momentum convec- 
tion. It is therefore of interest to determine 
whether the above model may be used to des- 
cribe either the motion of an infinite Prandtl 
number fluid between parallel horizontal rigid 
boundaries as has been suggested by Turcotte 
[l l] or the flow in a porous medium as has 
been suggested by Elder [4]. We discuss here 
the essential features of this model and show 
that it fails to describe the flow in either case. 

We refer to “infinite Prandtl number” when 
1 4 R 4 Rr* (see Robinson [5], p. 598). If the 
i power of the Prandtl number is small com- 
pared with the Rayleigh number (even if it is 
large compared to unity) then the model ’ 
developed by Robinson [5] is appropriate and 
the variation of the heat flux with change in 
Prandtl number predicted by the theory agrees 
well with the available experimental results 
(Eoc. cit., Fig. 8). 

The available numerical results on two- 
dimensional convection cells at high Rayleigh 
number [12-141 all consider Prandtl numbers 
of order unity. 

OU’I-Hh’E OF THE MODEL AND APPLICATION 
TO THE MOTION IN AN INFINITE PRANDTL 

NUMBER FLUID BETWEEN RIGID 
HORIZONTAL BOUNDARIES 

The Boussinesq approximation is used in 
writing the equations for conservation of mass, 
momentum (and eventually vorticity) and ther- 
mal energy. The density and the coefficients of 
viscosity and thermal diffusivity are assumed to 
be constant except for the density in the body 
force term in the momentum and vorticity 
equations. 

With the non-dimensionalization T = dr’, 
t = (d2/ic) t’, T = To + AT0 where d is the 
separation of the horizontal plates, K is the 
thermometric conductivity, AT is the tempera- 
ture difference between the plates and To is the 
mean temperature, the equations of motion in 
two dimensions are 



Pr-‘{v. V)q = v2q - Rug 
IL is the stream function of flow [ux = - (8$/&r), 
u, = (~$/~.x); the continuity equation (&,/8x) 
i- (&,,/&) = 0 is automati~aily satisfied] ; q is 
the vorticity = ~~~~~~~) - (&J&x) = -V241/; 
Ra is the Rayleigh number Ra = ~g~T~3/~~); 
Pr = V/K is the Prandtl number of the fluid. 

For infinite Prandtl number the vorticity 
equation (2) becomes 
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All boundary layer functions depend on the 
boundary layer coordinate and tend to zero 
in the interior of the cell it is the sums of these 
interior and boundary layer functions which 
must satisfy the boundary conditions. 

It is assmed that the streamlines for the 
inner flow are closed. Since the interior velacity 
is always found to be greater than unity by an 
order of magnitude the heat conduction is 
unim~rtant in the interior and the tem~rature 
is convected unchanged around the (closed) 
streamlines, Since the problem is asymmetrical 
this constant temperature is positive near the 

as 
v2q = Rax 

lower boundary and negative near the upper 
boundary. The interior temperature must there- 
fore be zero: 8i,t = 0. The equation for the 
interior stream function is then We will discuss here rectangular convection 

cells with dimensionless width L. The fluid is 
confined between rigid horizontal boundaries 
and is heated from below. The tem~rature 
boundary conditions are 8 = ; 8 on z = $ The 
vertical boundaries are periodic-we consider 
one of an infinite set of cells-and the tempera- 
ture boundary conditions on the vertical bound- 
aries are 8,/& = 0 (on x = 0, t). These are also 
the boundary conditions appropriate for in- 
sulated vertical boundaries, 

V4$in* = 0. (4) 

The temperature difference, 8, is assumed to be 
non-zero in boundary layers along each wall, 
and all heat transport takes place in those 
boundary layers. 

The velocity component perpendicular to 
the boundaries is zero, and thus we set II/ = 0 on 
all boundaries (z = 0, 1 and x = 0, L). The 
horizontal boundaries are rigid and the velocity 
parallel to these boundaries vanishes, i.e., 
24, = - ~~~/~z) = 0 on .a = 0, 1. Since the 
vertical boundaries between the cells are periodic 
there must be zero stress along these boundaries, 
i.e. (&,/&c) = - (&j,/Qx2) = 0 on x = 0, L. 
The stream function is constant along the 
boundaries giving ~~2~/~~2) = 0 on x = 0, L 
and this boundary condition can be written 
-V2$=tj==O. 

The following are the balances that must be 
satisfied in the boundary layers : 

(1) The flow is driven by the buoyancy forces 
acting in the vertical boundary layers. The 
vorticity creation and conduction terms in the 
vorticity equation (3) must be of equal order of 
magnitude in those boundary layers : 

The temperature and the stream functian 
are written as an interior function plus boundary 
layer functions 

and 

Raff Rat?-” 
ax- “’ 

This balance requires that 

Ra 6, - [t&l (5) 

Square brackets denote the order of magnitude 
of a quantity, 6, is the width of the vertical 
bo~dary layers and 6, is the width of the 
horizontal boundary layers. The subscript BL 
denotes a boundary layer function and the 
subscript int an interior function. 
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(2) The heat is conducted through the hori- 
zontal boundaries and convected away in the 
horizontal boundary layers. The velocity in 
these regions is the interior velocity; that is we 
take the interior velocity to satisfy both bound- 
ary conditions on the horizontal boundaries. 
The velocity parallel to the boundaries is thus 

The heat conduction is u,,& - [Uint] 82. The 
heat convection through the boundaries is 

y (aejaz) dx - & I. The two terms may balance 

irovided 

[%a1 = G (6) 
This is equivalent to the requirement that the 
heat convection and conduction terms should 
be of equal order of magnitude in the horizontal 
boundary layers. 

(3) The heat which is conducted into the cell 
through the horizontal boundaries is convected 
along the vertical boundary layers 

6;’ = [U&J 6,. (7) 

(4) The boundary layer function in the verti- 
cal boundary layers are chosen such that the 
necessary boundary conditions may be satisfied. 

Thus qBL+ Ylint = 0 on x = 0, L. Since the 
interior functions vary over distances of order 
unity, 

II%tl = [Vintl = iItlBL.1~ (8) 
The vorticity equation in those regions may be 
integrated to give qBr. = Ra j 0dx where qBL 
is the value of the boundary layer vorticity on 
the ~undary and the temperature integration 
is taken across the boundary layer. The bound- 
ary condition on the interior stream function 
is then V2$st = Ra f Odx on that boundary. 

Equations (S)-(8) give us four relations from 
which we may determine the four ~knowns. 
They are 

[ui”t] = Ru’ 

6, = Ra-* 

6, = Ram* 

EYIBLI = Rat, 

and the Nusselt number of the flow has magni- 
tude [Nu] = Ra3. 

The model is self-consistent provided (vV) 9 
V28 in the vertical boundary layers. Otherwise 
the heat will diffuse faster than it is transported 
and the boundary layer will lose its identity, 
i.e. the temperature equation in those regions 
would be @‘0/8x2) = 0, which does not have a 
boundary layer type solution (with @ # 0, 
(J@/&) = 0 and 0 -+ 0 as x + co). 

In the model above we find (v . V) B - [Q,J = 
Ra3 and V20 - S;’ = Ra*. This necessary 
condition that the model be self-consistent is 
not satisfied and the model cannot describe 
a possible motion of the system. 

The model may be altered by postulating 
velocity boundary layers near the vertical 
boundaries (rather than the vorticity boundary 
layers demanded by the boundary conditions), 
or velocity boundary layers near the horizontal 
boundaries, or both, but in each case an incon- 
sistency arises. 

If the Prandti number is of order unity the 
vorticity convection may not be neglected. The 
vorticity equation is then equation (2) above 
and the required balances are satisfied by 
[uint] = R&, 6, = 8, = Raf, [IMu] = Raf with 
constant interior vorticity and velocity bound- 
ary layers along the horizontal boundaries in 
which there is a balance between the momentum 
convection and the conduction terms. It is 
these boundary layers which allow the velocity 
to be of sufficient order of magnitude to convect 
the necessary heat away from the horizontal 
boundaries ; when the convection term is neg- 
lected as it is in the infinite Prandtl number 
approximation no such velocity layers may 
exist If, however, the boundaries are all free 
the internal velocity may have a non-zero 
component parallel to these boundaries and the 
heat transfer may be achieved without the aid 
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of velocity boundary layers. When the boundary 
is a rigid horizontal cylinder there are regions 
at the top and bottom where the boundaries 
are horizontal and there is again insufficient 
thermal convection in the boundary layer. 
The model, which has been applied by Menold 
and Ostrach [lo] in an attempt to describe this 
flow, again fails. It is suggested that a two-cell 
model may be appropriate in this case. 

Turcotte [9] has suggested a similar model 
to describe this flow. His analysis suggests 
[Uint] = R* and 6, = 8, = Rt. Using these 
values, the heat conducted through the hori- 
zontal boundaries is of order 6, 1 = Rt, and 
the heat convected along the vertical boundary 
layers is of order [uint] 6, = Rr. Thus the 
necessary balance between the heat conducted 
through the horizontal boundaries and the 
heat convected along the vertical boundary 
layers is not satisfied in that model. 

APPLICATION TO FLOW IN A POROUS MEDIUM 

The experiments of Elder [4] show that a 
similar cellular motion may be expected for 
flow in a porous medium; it is therefore of 
interest to determine whether this model will 
describe that flow at large Rayleigh number. 

The vorticity equation for flow in a porous 
medium has been shown by Wooding [ 151 to be 

rf=A.8, (9) 

where A = gKyATd/x,v is the Rayleigh num- 
ber of this problem. K is the permeability, K, 
the diffusivity and y the volumetric coefficient 
of expansion. The normal velocity vanishes 
on all boundaries so we set G(/ = 0 on x = 0, L 
and z = 0, 1. The temperature equation and 
boundary conditions are unchanged. 

We again assume that the interior streamlines 
are closed and find that the interior functions 
satisfy the equations 

einI = 0 Vim = O. 
The necessary balances are similar to those 

given above for an infinite Prandtl number 
viscous fluid. They are : 

(1) The flow is driven by the buoyancy forces 
in the vertical boundary layers. The vorticity 
in those boundary layers must balance the 
temperature gradient 

l&l = 47 l. (10) 
(2) The heat is conducted through the hori- 

zontal boundaries and convected away in the 
horizontal boundary layers. 

[Ui.l] S, = S, ‘. (11) 

(3) The heat which is conducted into the 
horizontal boundary layers is convected along 
the vertical boundary layers. The fourth condi- 
tion below implies that the vertical boundary 
layer velocity will be greater in order of magni- 
tude than the interior velocity. 

[UaJ 6” = s,- l. (12) 

(4) The boundary layer function in the vertical 
boundary layers are chosen such that the 
necessary boundary conditions may be satisfied. 
Thus tiint + l//aL = 0 on x = 0, L and 

[~BL.l = lI”BLl 6u = [~BLlsE = [%tl. Cl31 
If the vorticity boundary layer equation is 
integrated across the boundary layer, the bound- 
ary condition on the interior stream function is 
found to be ~inr = - $BL = -A 1 edx. 

Equations (11-13) may be solved to give 
S, = 1 which is contrary to the boundary layer 
assumption of the model. The model cannot 
therefore describe this flow. 

Elder [4] presented experimental and com- 
puted results for flow in a porous medium which 
suggests that for large Rayleigh number the 
Nusselt number is proportional to the Rayleigh 
number. He gives a short analysis of a horizontal 
boundary layer which suggests 6, = A- 1 ; 
[~tj,J~x] = A. H owever in this model 

[c?$~J~z~] = [i,?J 6;’ = A3 

in this region, and the vorticity equation is 
a2$/az2 = 0, which does not have a boundary 
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layer type solution. This short analysis cannot 
therefore form the basis of a complete model 
of the flow. 

APPLICATION TO MOTION OF A VISCOUS 
FLUID WITH LARGE RAYLEIGH NUMBER 

It is instructive to examine the variation of 
the boundary layer thickness in a large Prandtl 
number fluid in order to see how the breakdown 
of the model occurs as the Prandtl number 
increases to infinity. For finite Prandtl number 
the vorticity equation is equation (2) above. 
The derivation of the interior solutions is as 
outlined by Robinson [ 71; the interior equations 
are V2 tliint = cLtO, 0& = 0. 

boundary layers is chosen to satisfy the bound- 
ary condition nint -t qBL = 0. 

trr#Ll = C%]. (18) 

These balances are satisfied by [z&j = Ra* Pr - i 

ST = Ra-*Pr*, 8, = Ra-*Pr;, 

6, = Ra-*Pr-” 

As the Prandtl number is increased for a fixed 
Rayleigh number the velocity boundary layers 
on the rigid horizontal boundaries thicken 
and when Ra-%Pr 1 - 1 these boundary layers 
fill the cell: the boundary layer analysis is then 
invalid. 

The velocity and temperature boundary layers 
on the horizontal boundaries will now have 
different thicknesses, S,, 6, with 6, p 6,. The 
balances of the model are as follows : 

(1) The flow is driven by the buoyancy forces 
in the vertical boundary layers. For large 
Prandtl number there is a balance between 
vorticity creation and conduction in these 
regions 

[Y&J 6;’ = Ra S, ‘. (14) 

(2) The heat is conducted through the hori- 
zontal boundary layers. Since these layers are 
narrower than the velocity boundary layers, 
the appropriate velocity parallel to the bound- 
aries will be of order of magnitude I[zJJ (Sr/S,). 
The heat flux balance is thus 

Pillow [ 161 has developed a similar model in 
which the requirement that the boundary 
layer vorticity be chosen so as to satisfy the 
boundary conditions is replaced by a balance 
between the buoyancy torque and the sheer 
stress torque. Using this model we find 6, = 
Prh Rae’ so that a similar breakdown occurs 
for PrA Rae* - 1. 
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APPENDIX 

Flow in an infinite Plaits number viscous fluid 
with all bo~n~ar~e~ free 

A solution to this problem has been outlined 
by Turcotte and Oxburgh [S]. Here a more 
complete formulation of certain features of the 
model as developed in Robinson [6], [7] and 
the result of a simple computation are given. 

The temperature and vorticity equations are 
equations (l), (3) in the above paper. The tem- 
perature boundary conditions are + = rl = 0 
on all boundaries. Three of the necessary 
balances (equations (5), (7), (8)) are unchanged 
by the change of boundary conditions but 
equation (6) becomes u - [Q] 

CUintl = sIY2 (A-1) 
since the interior velocity parallel to the 
horizontal boundaries does not now vanish 
on those boundaries. 

The balances may be satisfied to give 

[Ui.l] = Ra” 

6, = 6, = Ra-* 

IV, * Ra”. 

In the vertical boundary layers it is now 
found that V% N (v. V) 8 and the model is 
therefore valid. This model is in fact almost the 
same as that for the finite Prandtl number and 
free boundary conditions with the interior 
velocity everywhere dominant and the tem- 
perature convected smoothly alongside the 
boundaries and around the corners (see Robin- 

son [5]). However the momentum convection 
term is now absent and we have a balance 
between momenta creation and conduction 
in the vertical boundary layers. 

The interior equations are 6in, = 0, V”$,, = 0 
with boundary conditions $int = 0 on all bound- 
aries; V2k, = 0 on z = 0,l; V2~i”~ = - Ra j &IX 
= f(2) on X = 0; ~“~i., = f(1 - Z) on X = L, 
where the integral is across the appropriate 
boundary layer. This vorticity boundary condi- 
tion is obtained by twice integrating the vertical 
vorticity boundary layer equation and setting 

qBL + ?i*t = 0 on each vertical boundary. 
Iff(z) is expanded in a sine series, 

f(z) = $ a, sin n7rz 

(which does not necessarily imply that f(z) -+ 0 
as z + 0, l), the interior stream function is 

e&t =- Ra* 

n=1 

x [cash nn(L - x) + (- 1)” cash nnx] 

(A.2) 

The temperature equation in the vertical bound- 
ary layers may be integrated to give (&_&&ax) 
f(z) = constant = A, which is a statement of the 
conservation of heat flux in those regions, 
Inserting the above values off(z), +i, into this 
equation, and equating coefficients of sin Nrcz 
(N = 0, 1,2. . .) gives 

$ c,ai = A (A.3) 

f ancna,+ + C anc,a,+N 
N-l 

n=N+i ?I=1 - .Zr 

x a,c,a,_, = 0 A’= 1,2,3,... 

where 

1 1 

” = % sinh2 nnL 
(sinh mtl;[cosh FZZL 

+ (- 1r’J - nzL [l + (- 1)” cash L]j. (A.4) 
These equations determine the as yet unknown 
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constants up to a factor ,,/A where A is the vertical 
heat flux in the boundary layer. This constant 
plays the same part in the analysis that the 
interior vorticity played in the finite Prandtl 
number problem and is determined when the 
problem is solved completely. 

The problem has been solved on a computer 
taking into consideration only the first term 
in the expansion off(z) (a = 0 for n > 1) and 
using the approximations as outlined in Robin- 

son [S]. The Nusselt number has a maximum 
of Nu = 0.19 Ra* for a cell width L = 1.3. 
Turcott and Oxburgh [8], who made the 
approximation f(z) = constant, obtained a value 
of Nu = 0.17 Ra* for a cell width L = 1.4. These 
estimates may be compared with the value of 
Nu = 0.28 Raf for a large, but finite, Prandtl 
number. It is suggested that the difference may 
be due to the crudity of the above approxima- 
tions to f(z). 

R&m&--Un mod&e a Cte tlabor6 pour d&ire le mouvement ceIlulaire bidimensionnel d’un Buide 
visqueux avec un nombre de Prandtl de l’ordre de l’unit6 chauf% par en dessous a des nombres de Rayleigh 
eleves. Ce mod&e est faciiement adapt6 pour d&ire un tel Ccoulement pour un nombm de Prandtl infmi 
&uvu que toutes les front&es soient libres. On a suggere qu’une bonne approximation du probl&me 
physique de l’ecoulement entre des frontieres horizontales rigides sera obtenue en posant le nombre de 
Prandti egal a l’infini, ignorant ainsi la convection de la quantim de mouvement. Un mouvement cellulaire 
semblable se produit dans l’ecoulement dans un milieu poreux a des nombres de Rayleigh elevb et un 
modble semblable a ttt propose pour d&ire ce mouvement. Les caracteristiques de base du mod&e 
sont esquissees et l’on montre que le modele ne reussit pas B d6crite soit le mouvement dun fluide a nombre 
de Prandtf infini entre des frontier& paralleles rigides soit cehti dun flu& dans un milieu poreux. Une 
anaiyse du modele pour un nombre de Prandtl fni et &eve et un grand nombre de Rayleigh montre que 
lorsque ie nombre de Prandtl est augment&, ies couches limites dynamiques sur les frontieres horizontales 
rigides s’epaississent, et remplissent tventuellement la cellule, perdant ainsi leur identim de couche limite 

et provoquant la defaillance du modele. 

Znsammenfassung-Es wurde em Model1 entwickelt, um die zweidimensionale Zellbewegung einer 
viskosen, von unten beheizten Fliissigkeit hoher Rayleighzahl und einer Prandtl-Zahl von der Griissen- 
ordnung 1 zu beschreiben. Das Model1 ist such geeignet, Stromungen bei unendlich grosser Prandtl-Zahl 
und freien Begreuzungen zu beschreiben. Es wurde angenommen, dass eine gute f&ereinstimmuug zum 
physikalischen Problem der Striimung zwischen festen, horizontalen Begrenzungen erreicht wird, wenn 
man die Prandtl-Zahl gleich Unendlich setzt und so die Imp&-Bewegung vernachliissigt. 

Eine ahniiche Zellbewegung tritt in einem por6sen K&per bei hohen Rayleigh-~1~ auf. Ein ent- 
sprechendes Model1 wurde vorgeschtagen, um diese Bewegung zu beschreiben, Die Grundmerkmale des 
Modells werden erwlhnt und es wird gezeigt, dass das Model1 entweder bei der Beschreibung der Bewegung 
einer Fliissigkeit bei unendlich grosser Prandtl-Zahl zwischen parallelen festen Begrenzungen oder bei 
der Beschreibung eines Minimums in einem poriisen K&per versagt. Eine Untersuchung des Modelis 
ftir grosse endliche Prandtl-Zahlen und grosse Rayleigh-Zahlen zeigt, dass bei Erhijhung der Prandtl- 
Zahl die Geschwindigkeitsgrenzschichten an den festen, horizontalen Begrenzungen anwachsen und die 
Zelle womiiglich auffiillen. Dadurch verlieren sie ihm Eigenschaft ais Grenzschicht, was das Versagen des 

Modells bewirkt. 

AHrroTaqnfl-Pa3pa6oTaHa Monenh AnH OHMCaHUH AByXMepHOrO RYeHCTOrO J.(3HHWHHH 
113rpeBaeMOfi CHM3y BSZ3KOfi XUiJ$KOCTLI C qElCJIOM n[paHRTJWI IlOpRp;Ka eRMHMQb1 npH 6OJIbUIOM 

YElCJle PezeR.3Ty MOReJIb JIerKO npHCnOCO6RTb RJIff O~MC~HHR TaKOrOJWfHteHIlFI IIpH 6eCKO- 

HeqHO~ 'fHCJIe ~PaH~T~~, eCJIM BCe rp3H~~~ CB060Ji~bI. ~Pe~~O~aeaeTCff, YTO XOpOIJIee 

~p~6~~l~eH~e K ~~3~~ecKo~ 3aAase TeYeHtIR B mecTKz5x rop~3o~Ta~bH~x fpaHaqax MOWHO 

nOZy~IlTb,IIpPE-IFIB WiCJiO%paH&TJIA paBHbIM 6eCKOHWlHOCT3I II npeHf?6peraRTBKl4M 06pa30M 

KOHBeK~fiett.,kHaJIorHWoe RYewcoeflBsmeH~e IIPOMCXO~HTB nOpiU2TOtcpene npn6OJIbruaX 

sacnax Penefi, ~O~TOMY MOWHO npeHnOnO)KHTb, 'IT0 3TOT CJIyYatt MOPKeT 6bITb OnHCaH 
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npe~naPaeMoi%iwo~enbm.AaeTcR o6ueeonmaH~e3~08Mo~em ~yKaaaao,~~o 0KaKeMomeT 

6bITb HCIIOJIb30BaHa fiJIR OIIMCaHHR TeYeHRR HWAKOCTM B )KeCTKMX rpaHIlqaX IIpH 6eCKOHeP 

HOM YMCJIe np3HflT.W HJILf H(RflKOCTEr B ItOpi4CTOtiCpe~e.AHanSi3 3TOtMOAeJIIl AJfFI dosrbtuoro 

KOHeYHOrO WiCJIa npaHRTJIR I4 6onbmOro 'IIICJIB PeJIeR IIOKa3bIBaeT, YTO IIpI4 yMeHb,IIeHllH 

wcna IIpaanTm Tonqma nr~po~mramvecKor0 norpaKmHor0 cn0~1 Ka.mecTKoZi ropw 

3oKTanbKoti rpaHcrqe yBem4maeTc~ 51 IlHOrAa HaItOJIHFIeT WlefiKy; TaKMM 06pa3oM, 

IIOrpaHWHbIii CJIOfl nepeCT3eT CyIQeCTBOBaTb 41 MOReJIb HapyIUaeTCH. 


